

2023

Solver for vehicle routing
problems

VrpSolver

DOCUMENTATION V. 1.4.4

SHOBB@YANDEX.COM

THE AUTHOR WILL GREATLY APPRECIATE ANY FEEDBACK.

https://www.microsoft.com/store/apps/9N5MGGPMT3B8
mailto:shobb@yandex.com

P a g e 1 | 11

Contents
Description of the task for which this program is intended ... 2

The algorithm used ... 2

The data you need to solve the problem: ... 3

Program limits ... 4

Input file description ... 4

Detailed descriptions of input structures in C# notation: .. 5

Point data structure: ... 5

Distance matrix element data structure: .. 5

Vehicle data structure: .. 6

Skills string format: ... 6

Transfer order data structure: .. 8

Solution file description: ... 8

Result.json structure description: ... 8

Summary structure: .. 9

Error structure: ... 9

Route structure: .. 9

Segment structure: ... 11

P a g e 2 | 11

Description of the task for which this program is intended

This program is designed to solve various types of vehicle routing problems (VRPs) with pickups and
deliveries. The program can handle the following features and constraints:

• Each vehicle has its own attributes, such as cost, availability, capacity, route, and skills.
• Each order has its own specifications, such as pickup and delivery locations, time windows,

weight, and required skills.
• The program aims to assign orders to vehicles in a way that minimizes the total cost and meets

the time requirements.

Some examples of VRPs that this program can solve are:

• Pickup and Delivery Problem with Time Windows (PDPTW)
• Dial-a-Ride Problem (DARP)
• Capacitated Vehicle Routing Problem (CVRP)
• Capacitated Vehicle Routing Problem with Time Windows (CVRPTW)

The algorithm used

• The optimizer uses a highly advanced meta heuristic algorithms to solve the problem –

simulated annealing SA (or late acceptance high climbing LAHC) with local neighborhood search,

the effectiveness of which is confirmed by several world records and some achievements in

solving reference tests. These algorithms have proven to be very effective and efficient in

solving complex problems.

• Its speed, with very good quality of the solution is quite high. All operations that are possible are

performed in parallel. Thus, you can increase the speed of the solution by increasing the number

of processor cores.

P a g e 3 | 11

The data you need to solve the problem:

• A set of starting and end points for vehicles and points of departure and destination. Some of

these points may be the same

• The time/distance matrix between all these points. Each element of the matrix may depend on

time. In addition, up to four different matrixes can be set (for each vehicle, you can specify

which matrix to use if the characteristics of the vehicles are different)

• The details of each order, such as:

o Pickup and delivery points for order

o Weight and volume of cargo

o Time required to load and unload cargo

o Multiply time windows to load and unload cargo

o You can also set unloading time windows relative to load time. This gives the possibility

to restrict maximal time to transfer cargo – required at example at DARP

o The skills required from vehicle to handle the order.

• The characteristics of each vehicle, such as:

o The starting and ending points of its route. These may be the same or different.

o Attribute, if vehicle needs to return to end point or route ends at destination of last

order

o The maximum capacity in terms of weight and volume

o The maximum length of its route and number of orders

o The delay at each point, which can be used instead of separate loading and unloading

times (optional)

o Own vehicle weight – to calculate total transport work (gross ton-mile - I refer this value

further as job)

o Separate costs for:

▪ Unit of distance

▪ Unit of job (transport work) – you can plan more greener and logic routes,

because fuel consumption and passenger convenience depend on this

▪ Unit of time – time is also costs something; you do not use even small value for

this – not to plan route which is 1% shorter but requires 100% time more.

▪ Own cost for using this vehicle

o The skills that the vehicle has

➢ The program requires a zip archive with several json files as input data. You can find the

description of these files below.

➢ You need to load the zip archive into the program and start the optimization process. This may

take some time depending on the size and complexity of the problem.

➢ After the optimization is done, you can save the results as another zip archive with a different

set of files. You can find the description of these files below as well.

P a g e 4 | 11

Program limits
❖ This version of solver is suitable for tasks with approximately 500 to 800 orders and hundreds of

vehicles.

❖ For such tasks, 8GB of memory should be sufficient.

Input file description

• The program requires a zip archive (with the .zip extension) as input data. You can see an

example of this archive in example.zip. Autogenerated Json schemas of files in this archive -

vrpsolver_schemas.zip.

• The archive should contain these files:

1. Points.json: A list of all the points in the problem, such as where vehicles start and end,

and where orders are picked up and delivered.

2. Vehicles.json: A list of all the vehicles in the problem, with their features and limits.

3. Orders.json: A list of all the orders in the problem, with their details and needs.
4. Matrix.json: A time/distance matrix that shows how long and how far it takes to

travel between any two points. You can have up to four different matrices for
different kinds of vehicles. If you need more than one matrix, you can name them as
matrix1.json, matrix2.json, and matrix3.json.

5. options.json (optional): A file that has some options for the solver, like:

o MinInuse: A flag that tells the solver to use fewer vehicles in the solution,
even if it costs more. The default value is 1 (true).

o MinReturns: A flag that tells the solver to visit points that are pickup
locations for many orders less often. The default value is 1 (true).

o NumSolvers: The number of solvers that run concurrently. The default value
is 1, which works well for most problems. Increasing it allows multiple
solvers to run in parallel and choose the best solution. The value must be
positive.

o NumIterations: The number of times that the solver tries to find the best
solution. The default value is 100000, which works well for most problems.
For small tasks, you can reduce this value; for large tasks, you can increase
it.

o InitRebuilds: The number of times that the solver tries to find a starting
solution. A good value is between 500 and 1000. This value can be zero if
you give an absolute temperature value in Simulated Annealing (SA) mode
or in Late Acceptance Hill Climbing (LAHC) mode.

o Timeout: The most time (in minutes) that the solver can run. If zero, there is
no time limit.

o KInitTemp: A parameter that changes the starting temperature in Simulated
Annealing (SA) mode. If positive, it is used as a factor for auto-finding the

https://shobb.github.io/vrp/example.zip
https://shobb.github.io/vrp/vrpsolver_schemas.zip

P a g e 5 | 11

starting temperature. If negative, it is used as a fixed value. The default
value is 0.5.

o LahcLength: A parameter of Late Acceptance Hill Climbing (LAHC)
algorithm. If positive, the solver uses LAHC instead of SA. The default value
is zero. If you want to use LAHC, you can try a value around 100. SA and
LAHC modes have their own advantages and disadvantages.

6. sdata.txt (optional): A file that has a starting solution from a previous run.
7. Optionally: sdata.txt – The initial solution from previous run.

Detailed descriptions of input structures in C# notation:

Point data structure:

struct SPtInfo {

int Id // Unique point ID

string Name // Name

string Info // optional: Additional information

string Address // optional: Address

string LatLng // optional: GPS coordinates

}

Distance matrix element data structure:

struct SVDistInfo {
 int Point_from_id // Identifier of the point of the beginning of the section
 int Point_to_id // Identifier of the end point of the section
 STimeInfo [] ATime // Array of time/distance description structures (at least 1 element)
 // Time / distance array element:
 struct STimeInfo {
 double StartTime // Start time of this element
 double TravelTime // Travel time
 double Distance // Travel distance
 }

// ATime elements must be sorted by StartTime and StartTime of all elements must be different
 }

P a g e 6 | 11

Vehicle data structure:

struct SVehData
 {
 int Id // Unique identifier of vehicle.
 string Name // Name
 int Start_Point_Id // Identifier of the route start point
 int End_Point_Id // Identifier of the route end point (can be the same as Start_Point_Id)
 double Capacity // load capacity
 double Volume // optional: maximum cargo volume
 int Matrix_Index // Index of the time/distance matrix (0 - 3)
 double Max_run // maximum allowed path length
 int Max_Order_Count // maximum allowed number of orders to be executed
 int Attr // 0 - if the vehicle ends the path at the destination of the last order,

otherwise 1
int LoadConstr // Restrictions on the order of loading / unloading: 0 - no, 1 - LIFO, 2 -

FIFO
 double TimeStart // Start time
 double TimeEnd // End time of work
 double delay_at_pt // Delay time when for loading / unloading
 double own_weight // Own weight of vehicle
 double cost_vehicle // Fixed cost for using vehicle
 double cost_distance // Cost of distance unit
 double cost_time // Cost of a unit of time
 double cost_job // Cost of a unit of transport work
 double kcost_order // Coefficient of the cost of an order for this vehicle
 double coefficient_of_delay // optional: Coefficient of the cost of the delay in the start of the order
 double ktime_speed // optional: Speed coefficient - the time of distance matrix is multiplied

by this coefficient
 string Skills // - optional: list of additional properties of this vehicle
 }

Skills string format:
<NAME OF SKILL1:string>:<COUNT:int>:<TYPE:int>;<NAME OF SKILL2:string>:<COUNT:int>:<TYPE:int>

Where
NAME OF SKILL – some abbreviation for skill
COUNT – number of such skills (max value - 10000)
Type of skill: 0, 1, 2 or 3.
If type of skill is 1 – then it is released after using by some order, is 0 – vehicle simply “has” such
property, type 2 – if skill has limit for whole route – it is not released by order.
At example skills for taxi: front seat, two rear seats and lux car – “FRS:1:1;REAR:2:1;LUX:0:1”

If the type of skill is 3, then COUNT must be zero for vehicles; but for orders, COUNT will indicate
the “kind” of the skill. This means that orders with the same skill name but different kinds cannot
be assigned to the same vehicle at the same time.

P a g e 7 | 11

For example, a vehicle with the skill TEMPERATURE;3;0 can handle orders with different
temperature requirements, but not simultaneously. An order with TEMPERATURE;1 needs a cold
environment, while an order with TEMPERATURE;2 needs a hot environment.

For Order it does not contain type, only name of skill and count or kind.
At example:
“REAR:1;LUX:1” – Order needs 1 rear seat in LUX car.
If Skills for order – empty string – order does not need any special resources.

P a g e 8 | 11

Transfer order data structure:

public struct SOrderData {
 public int Id // Unique order identifier
 public string Name // Name
 public int Point_from_id // loading point identifier
 public int Point_to_id // destination point identifier
 public double Cargo_weight // Cargo weight
 public double Cargo_volume // optional: cargo volume
 public double TimeToLoad // Time to Load
 public double [] TimeStartLoad // Array of start time of time windows to load
 public double [] TimeEndLoad // Array of the end time of time windows for loading
 // Arrays TimeStartLoad and TimeEndLoad must have equal length

 public double TimeToUnload // Array of start times of time windows to unload
 public double [] TimeStartUnload // Array of start times of time windows for unloading
 public double [] TimeEndUnload // Array of the end time of time windows for unloading
 // Arrays TimeStartUnload and TimeEndUnload must have equal length

public bool adjust_UnloadTw // true - if the time window for unloading is set relative to the
load time, and in fact it represents the time limit for order
fulfillment.

 public double CostOfDelay // optional: the cost of delaying the start of the order
 public string Skills // optional: Requires additional vehicle properties to complete

the order.
}

Solution file description:

• The solution file is zip archive with the following elements:

1. result. json – information about the solution in json format. See below.

2. result.txt – a solution in human-readable text form.

3. result.xlsx - a solution in Microsoft Excel format.

4. sdata.txt – a file that, if necessary, can be used as an initial solution to the task.

Result.json structure description:

(Json schema - schema_result_solution.json)

P a g e 9 | 11

solution
{
 solution_summary summary // Total values across all routes
 List<route> routes // list of all routes
}

Summary structure:
solution_summary
 {
 double duration // Total duration of all routes
 double distance // Total length of all routes
 double job // Total transport work
 double cost // Total cost
 double orders_cost // Total orders cost
 double cargo_weight // Total cargo weight
 int orders_count // Total number of orders
 double wait_time // Total waiting time
 int number_of_routes // Total routes
 List<error> errors // List of errors, if any
 }

Error structure:
error
 {
 string description // Error description
 double value // Value
}

Route structure:
route
{
 int route_nr // Route number
 vehicle vehicle // Vehicle description
 summary summary // Summary for this route
 List<segment> segments // List of route segments
}

P a g e 10 | 11

Vehicle structure:

vehicle
 {
 int id // Unique identifier of vehicle.
 string name // Name
 string loading_constraints // Restrictions on the order of loading / unloading
 double delay_at_point // Delay time when for loading / unloading
 double ktime_speed // Speed coefficient
 List<skill> skills // List of additional properties of this vehicle
 point depot // Depot point
 point destination // Destination point
 int Matrix_Index // Index of the time/distance matrix
 }

Skill structure:

skill
{
 string name // Skill name
 short as_resources // Skill type
 int count // Skill count
}

Point structure:

point
{
 int id // Unique point ID
 string name // Name
 string info // Additional information
 string address // Address
 string latlng // GPS coordinates
 List<operation> operations // List of operations performed at this point, if any
}

P a g e 11 | 11

Operation structure:

operation
 {
 string type // Type of operation: Load / Unload
 double start_time // Start time of this operation
 double end_time // End time of this operation
 double late // Delay, if any
 double wait // Wait time before operation, if any

 // Information about related order:
 int order_id // Unique order identifier
 string order_name // Name
 double order_weight // Cargo weight
 double order_volume // Cargo volume
 List<skill> order_skills // Additional vehicle properties, required to complete the order,

if any
}

Segment structure:
segment
 {
 point from_point // Segment start point
 point at_point // Segment end point
 double distance // Travel distance
 double duration // Travel duration
 double start_time // Start time
 List<onboard> onboard; // Items on board
}

Onboard structure:

onboard
{
// Information about order:
 int order_id // Unique order identifier
 string order_name // Name
 double order_weight // Cargo weight
 double order_volume // Cargo volume
 List<skill> order_skills // Additional vehicle properties, required to complete the order,

if any
 }

